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TECHNICAL NOTE 2262

ROLLING AND YAWING MOMENTS FOR SWEPT—BACK WINGS
IN STDESLIP AT SUPERSONIC SPEEDS

By Seymour Lampert
SUMMARY

By the use of methods of linearized nonviscous, conical—flow
theory, formulas for computing the rolling and yawing moments for flat,
thin, swept—back wings at angle of yaw have been developed. The for—-
mulas were derived specifically to treat that family of wing plan forms
for which all edges are subsonic (i.e., the component of the free—stream
velocity normal to the edge is subsonic) and straight. The formulas are
also applicable to wings for which all but the trailing edge is sub—
sonic. The rolling and yawing moments of several representative plan
forms were calculated. All the wings showed stable rolling moments
about the axis of symmetry of the wing plan form, and showed stable
yawing moments about a vertical axis through the apex of the wing.

INTRODUCTION

In previous. treatments of the problem of determining the rolling
- or yawing moment due to steady sideslip or yaw at supersonic speeds
(references 1, 2, 3, and 4), the case of thin, flat, swept—back wings
with all edges subsonic (fig. 1) — that 1is, where the component of the
free—stream velocity normal to any edge is subsonic — has not been
treated. The classes of swept-back wings studied in the references
cited have supersonic trailing edges, where the Kutta condition is
fulfilled without affecting the existing flow over the wing. However,
in fulfilling the Kutta condition at a subsonic tralling edge the flow
over the wing will be affected. The Kutta conditlon may be realized

In such cases if the 1lift distribution (i.e., streamwise component of
the perturbation velocity) is made to go continuously to zero at these .
edges., Lagerstrom in reference 5 suggested that this may be accomplished
. by the superposition of conical—flow fields on seml—infinite flow fields
to cancel 1ift distribution beyond the edges. The methods suggested in
reference 5 wers used in reference 6 to calculate the 1ift and pitching
moments on swept—back wings having all edges subsonic. In a similar
manner the methods of reference 5 are utilized in the present paper to
~obtain the rolling moments of such wings at an angle of yaw,
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In addition to satisfying the Kutta condition at the trailing edge,
it must also be satisfied for the trailing tip in the case of the yawed
wing. In figure 2, it can be seen that as the wing is yawed, one initi-
ally streamwise tip becomes a subsonic trailing edge where the Kutta
condition must apply, the other tip becomes a subsonic leading edge where
the 1ift distribution is similar to that associated with the leading edge
of a thin flat plate in subsonic flow. At such leading edges the linear-
ized theory gives an infinite value for the streamwise perturbation
velocity (i.e., 1lift distribution) accompanied by a horizontal suction
force. These conditions at the tips are taken into account in the equa—
tions that are subsequently derived for the 1lift, rolling moment, and
yawing moment.

Although the formulas in this paper were derived for wings with
initially unraked tips, they may be applied to wings with initially
raked tips if a change of the parameters involving the slopes of the
tips is made. It should be pointed out that the rolling up of the
vortices around a streamwise or nearly streamwise edge 1is not predicated
by the linear theory. Therefore, the results given in this paper may
not completely describe the nature of the flow at any edge which is
nearly alined with the free—stream direction.

SYMBOLS

General
v free—stream velocity
M free—stream Mach number
B M2-1
o] free—stream density

V2"

o] - free—stream dynamic pressure <%—-)
Ap . . . bhu\ -
aa coefficient of local 1lift per unit angle of attack o
a angle of attack, radians
¥ angle of yaw, degrees (positive as shown in fig. 3) or negative

sideslip

) B tan ¥
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Wing Parameters

A aspect ratio
Co root chord
ct tip chord

8 semispan

area of wing plan form

A angle of sweep of leading edge, degrees
St
A taper ratio o
- Coordinates

X,y¥,2 Cartesian coordinates in the stream direction, across the‘stream,
and in the vertical direction, respectively

Xgs¥a coordinateé of the apex of a constant—load element defined by
ray a ‘

XpsYp  coordinates of the apex of an element used in secondary correc—
tions

Xs,¥ys coordinates of the apex of the trai}ihg edge

3 spanwise coordinate referred to the apex of a constant—~load
element

In the following, all slopes are measured in the positive sense
counterclockwise from the x axis:

a B X (slope of ray from apex of wing) = B % (used also as a
subscript)
¥y —Ja, ’
tg, B X (slope of ray through xg,y;) = B pra
' a
. ‘ IV
tp B X (slope of ray through Xy ¥p) = B pran
‘ b
/ | y=¥s
tg B X (slope of ray through Xg,¥s) = B
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Rays Describing Wing Geometry

The following are for the unyawed wing shown in figure 1l:

a; B X (slope of ray from apex through intersection of right-span
tip and trailing edge) = Bs
c°+(Bs;mt)
m B X (élope'of right-span leading edge) = B cot A
my B X (slope of right—span trailing edge)

The following are for the yawed wing shown in figure 2. Here the
subscripte 1 and 2 refer to the right and left spans, respectively.

alt,agt B X (absolute value of the slope of the ray from apex through
the intersection of the tip and trailing edge)

o at—6 > at+8
a = . a =
lt B <52+at8> 2t B Bg—at8>
m;,m> B X (absolute value of the slope of leading edge)
m=-3 o m+3
m = p2 my =
2o P <32+m6> 2=p <l32—m5
myy,mpy B X (absolute value of the slope of the trailing edge)
m—5 . . m +3
m, = B%( —5 mz, = B%( —
t pE+m B t B=—m; 5

In genefal, sny yawed rays d,, dp which describe the wing geom—
etry may be obtained from the unyawed rays 4 by the following rela—

tions:
_ of 6 e d+8>
d =B ( 32+d8> 2 =P (Bz—dﬁ

Perturbation Velocity Components

u,v,w perturbation velocities in the x,y,z directions, respectively

up(a)  streamwise perturbation velocity for a triangular wing at angle
of yaw
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up, (a)
Ug
Vay

Wy

Us

I"O'

AL'

(AL')g

value of up(a) for wing reflected in the x axis

incremental velocity oil any constant—load element
value of ug for wing reflected in x axis

Incremental velocity on the, elements used in secondary correc—
tions

value of uy(a) for a=-5&
Forces and Moments-

drag due to 1lift
basic 1lift for the entire wing
correction to basic 1ift

correction to basic 1ift due to the application of one coilstant«f
"~ load element : ‘

basic rolling moment for the entire x"ring‘ evaluated about the
axis of symmetry

" correction to the basic rolling moment

correction to the basic rolling momeﬁt due to the application of
one constant—~load element

yawing moment about the apex of the wing
suction force per unit length of edge

drag coefficient(%) '

1ift coefficient (%g)

; / rolling moment
rolling-moment coefficient K 5488

yawing moment
2gqsS

yawing-moment coefficient (

coefficient of yawing'moment due to normal force (chz')

coefficlent of yawing moment due to suction force -
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Elliptic Integrals

'k modulus of elliptic integral (value given in text)
k' complementary modulus (a/1-k%) (value given in text)

K(k) complete elliptic integrals of the first and second kinds,
respectively, of modulus k

F(p,k) | incomplete elliptic integrals of the first and second kinds,
E(g,k) respectively, of modulus k and argument o

2o(0) = [BIF(K',) + K(K)E(k,0) = K(K)F(K',0)]
ANALYSIS

The present report utilizes the same cancellation—of—-lift process
as was used in reference 6 to determine the induced effects due to the
interaction between the flows on the upper and lower surfaces of wings
with subsonic tips and trailing edges. The method consists of super—
posing conical—flow fields on a semi—infinite flow field in order to
satisfy the boundary conditions about a given wing plan form. The analy—
sis of the characteristics of a thin, flat, yawed, swept wing with sub—
sonic edges by this method falls logically into two main divisions:
namely, (1) that of computing the basic forces and moments on a given
plan form due to the flow field associated with a semi—infinite yawed
lifting triangular wing of the same apex angle as the given plan form,
and (2) that of determining the forces and moments induced by the inter—
action between the upper— and lower—surface flows around the subsonic
tips and trailing edges. These induced forces and moments on the wing
may be computed by superposing conical—flow fields beyond the tips and
trailing edges in order to cancel the 1ift of the infinite field.

The flow fields which are superposed in the cancellation process
may be expressed in terms of the perturbation velocities (u,v,w). If
Q represents a perturbation velocity it must satisfy the linearized
equation for a nonviscous, irrotational compressible fluid, namely,

3% |, 3% |, d%
1-M2
( ) x> ¥ dy® ¥ dz?

=0 (1)

It can be shown that @ may be expressed as a function of a single
complex variable; the variable is homogeneous of degree zero, that is,
constant along rays from a fixed point in space (references 5 and 7).
The flow fields represented by Q therefore are conical. Several of
these flow fields are described in detail in reference 5. The boundary
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conditions which will be ‘imposed on these fields for purposes of the
present problem will be indicated later.

In order to simplify the analysis, the wing plan form has been
divided into a number of separate regions as shown in figure 2. The
regions are defined as follows:

1. The basic region is the entire wing plan form. In this region
first approximations to the 1ift and rolling moment about the axis of
symmetry are obtained by integrating over the entire plan form the 1lift
distribution given by the expression for a yawed triangular wing having
the same apex angle as the given plan form. This 1lift and rolling
moment will be designated as the basic 1lift and basic rolling moment.

2. The primary regions are the regions which are influenced by the -
cancellation of the basic 1lift distribution for a sideslipping triangular
wing beyond the tip and trailing edges of the desired plan form. The
corrections to the lift and rolling moment which occur in these regions
will be called primary corrections.

3. The secondary regions are those which are influenced by addi-—
tional corrections which must be applied at the edges of the wing where
the cancellation flows introduce residual 1ift distributions beyond the
confines of the wing. These corrections to the 1lift and rolling moment
will be called secondary corrections, and, in general, are negligible
for small angles of yaw.

Basic Lift and Rolling Moment

The basic 1lift is obtained by integrating the 1ift distribution of
a yawed semi-infinite triangular wing over the wing plan form shown in
figure 2. If m,/B and my/B are the magnitudes of the slopes of the
right— and left—span leading edges of a yawed triangular wing with sub—
sonic leading edges, the velocity distribution in the stream direction
may be obtained from reference 8 as

Pova[ 2mimo+a ( my—Mo ) ]

B/ (m1—a) (mata)

up(a) = (2)

where

‘ 1
P
" E(ko) [ (T4my) (Lema) + o (1ome) (omp) ] (3)
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and E(ko) is the complete elliptic integral of the second kind of

modulus
k ‘ - 2[ (l—miz) :L—-Ill122)]l/4 (1&)
° " V(Temy) (Ttmz) + of (3mp) (3m2)

The velocity distribution. u,(a) at a wing section normal to the flow
direction is shown in figureAB for typical values of m and B. The
corresponding 1lift distribution per unit angle of attack for the tri-
angular wing may be expressed as

L Juple) | (5)
qa Va

Integrating equation (5) over the wing plan form shown in figure 2
yields for the total basic lift (see appendix A)

L B2452 my 614\ mog—eag\*
= 2 T ———
‘—Qqa 2Po & = [I1(6)< a5 > + 12(6)+<_——32t I5(8)+I,(3) ]
(6)

The values of Ij(8) i=1,2,3,4 are given in appendix A (equations
" (A8) and (A9)).

The basic rolling moment about the axis of symmetry of the wing is
given by

L' _ b a B2+482 Eﬁf:ffﬁ 8 moy—az \®
@ -3 Po s 55 [111(6)< e > + Ip(8) — IIa(6)<————a2t_6 > -
u(a)] (7)

See appendix A, equation (Al2), for II;(3) and II5(3).
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Primary Corrections

Tip corrections — right span (region II).— The following correc—
tion applies over the region shown in figure 2 as ABF, where AB
corresponds to the right—span tip. This tip acts like a subsonic trail-
ing edge since the streamwise velocity component must cross this edge to
leave the wing. It is therefore necessary to impose the Kutta condition
along jhis edge. This condition is satisfied by canceling the 1lift dis—
tribution due to the triangular wing beyond the confines of the tip
edge. The cancellation is accomplished by superposing the flow fields

"of an Infinite number of constantly loaded overlapping sectors of infin-
ite extent along the tip. As shown in figure 4, each of these sectors

is bounded by a line along the wing tip and a fixed ray a = constant
from the apex of the wing. It is prescribed that each sector carry a
constant load proportional to the incremental change of the loading for
the triangular wing along the rays, namely,

o, | |
v = 2a(8) o, (8

The effect on the wing of one constant—load sector, defined by a
single ray a, 1s first computed, and then the integrated effect of all
the sectors along the tip is determined. The solutions for constant~—
load elements should be such that they introduce no change in the angle
of attack of the wing; that is, the induced downwash on the wing should
be zero. ' In the stream the préssure difference must vanish. The
boundary conditions for a given elemental sector may be expressed as
follows (fig. 4): '

IA

1. u = ug -5 < tg

a
2. u=0 a<tg S +1
3.  w=0 1<t <-8

~ An additional condition on the perturbation velocities is that they

must vanish on the Mach cone from xg, yg. If a general ray from the

apex of one of these constant—load elements is defined by

(9)
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a=pla (10)

then the function satisfying the conditions specified, given by
Lagerstrom in reference 5, may be expressed as

u
u = r.p. ;Q cos™! n1(a,ty) (11)

(a+8) (L+ty)+(ta+d) (1+a)

a,tg) = 12
The change in local pressure for a single constant—load sector may
‘therefore be expressed as
b ug
< ) = 7 7 SOF n1(a,ta)
(13)

1< tg <=5

The integration of the 1lift for a single element in region II gives

-

(AL)a = Vg 82 P22 Gy (a) (14)

where G;(a) i1is given in appendix B (equation (Bll)).

The total induced 1lift correction on thls tip is determined by
calculating the effect of canceling with one sector the 1lift density at
the leading edge and then adding back the integrated effect of all the
" elements along the tip edge. Since the magnitude of the 1lift density at

the leading edge is infinite, the quadrature described above is performed
as follows:

B2452 [ dup(a)
AL = pVs?2 1i -up(a)Gy(a) Gi(a) da | (15)
pVs ; m up(a)Gy(a) + JCj 1(a a}

a—>m; N da



24

NACA TN 2262 . ; 11

Integrating by parts and passing to the limit gives

2,82 \1
ﬁ% = — pVs® E_%ﬁ_ k/h up(a)Gy' (a) da (16)
&1t

Similarly, the rolling—mdment correction for a single element is

- 2,2
(AL')g = — oV ug s® B ;6 H,(a) (17)

and the total induced moment may be expressed as

1 8/a2,s2 1 , '
AL =p Vs2 (BT+87) fm uA(&)Hl' (a) da (18)
qo qoB a,
t

The derivatives Gi'(a) and H,'(a) are given in appendix B (equations
(B13) and (B22)).

Tip correction — left span (region III).— The following correction

applies over the region shown in figure 2 as DGC and includes the left
tip DC which may be considered a subsonic leading edge, since the
streamwise component of the velocity must cross this edge in order to
reach the wing.

In canceling the 1ift distribution beyond a leading tip, it is
necessary to modify the previously used cancellation function (equation
(11)) to satisfy the condition of uniform downwash over the wing plan
form (reference 5). The modification takes the form of an additional
term, which in turn introduces a singularity in the 1lift distribution at
the leading tip analogous to that at a leading edge in subsonic flow.

In treating the left—span tip, it 1s convenient, as in appendix 4, to
consider the wing to be reflected in the x axis so that the left—span
tip may be treated in the first quadrant. In figure 5 the boundary con—
ditions for a single element and the regions of influence for the primary
induced corrections are given for the reflected wing. The boundary con—
ditions are as follows:

A
©

1. u = ual 5 < ',ta
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The wvalue of Ug, is the value of ug for the wing reflected in the’

x axis. (See appendix A, equation (Al), for the required transforme—
tion.)

The function which satisfies the boundary conditions along & lead—
ing tip is given in references 2 and 5 and takes the form

ug
u = r.p. —;l [cos‘l na(a,ta) — a(iia) V//(a—s)(;i:l(l+ta) ]

(19)
-1=5 tg < B
where

(a—=8) (1+tg ) +(tg—=d) (1+a)

(20)
(tg—a) (1+8)

n2(a,ta) =

The 1lift distribution for one element becomes

bug ' —
A 1 _ 25 (a—8) (1+a) (1+tg)
d <q§ - W&’[cos 1 nz(a,ty) — a(1+5) / B—tg : } (21)

The integration of 1lift for a single sector gives

2482
(AL)g = quaz s2 Go(a) (22)
The totél 1ift correction is then
AL B2452 2
@ oV 82 3 ‘/Pm uAZ(a)Gg‘(a) da (23)
aszy .

where the functions Go(a) and its derivative Go'(a) are given in
appendix B (equations (B1ll) and (B13), respectively).

The rolling moment induced by a single sector becomes

(&L)q = pVuay s° BB Bo(a) (e
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and the total rolling-moment correction takes the form

2,82 ‘ Mo

AL, V(BP48) o f up, (2) Ho'(a) da (25)
qa, qaB ' as
t

The function Hp(a) and its derivative H,'(a) are given in
appendix B (equations (B20) and (B22), respectively).

Wake corrections (regions IV and V).— The following corrections
apply over the regions defined in figure 2 as O'EAB and 0'CI, where
O'B and 0'C are both subsonic trailing edges at which the Kutta condi-
tion must be imposed. Behind these edges, the 1ift distribution is -
reduced to zero in two steps (fig. 6): (1) canceling 1lift in the amount
of the 1ift density at the apex of the trailing edge with a single seml~—
infinite field extending over the whole wake region, and (2) removing
the remaining variation by the superposition of infinitesimally loaded
elements along the trailing edges in the manner described for the tip
edges. The latter elements are bounded by the trailing edge and rays
from the apex of the wing. ‘

The correction to the 1ift resulting from step (1) above for the
single field influences both regions IV and V. If

by = p L2 o (26)

XX o)

refers to a ray from the apex Xgs ¥y Of the trailing edge, the boundary
conditions which must be satisfied for the correction function are

1. u = U.A(—S) - M2t < ta < mlt
2. 'w=0 ‘ '—m2t>t5>mlt

These boundary conditions and the regions affected by the corrections
are shown in figure 7., The function takes the form

u(t55 =’f.P. ug Eé%§§l : (27)
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© - sin? /(1+mlt)(1—t5) (28)

(1-my, ) (1+t5)

and

1
K = v//(l—mlt)( 'mzt) (29)

(1+m1t) (l+m2t)

The foregoing expression is a generalization of the equation given in
reference 9 for the symmetric trailing—edge correction and is valid when
the wing 18 yawed. The ug 1is that given by the triangular-wing solu—
tion for & equal to -~ 5, or

| - _ Pol2mymo—5(my—ms) ] Var
B = U = e eD) () S

The total correction to the 1lift induced by the cancellation of the
field of uniform 1ift distribution in the weke is obtained by integrat—
ing equation (27) over the regions of the wing contained within the Mach
cone from the apex of the trailing edge. If the Mach lines intersect
the leading edge, as shown in figure 2, it is convenient to integrate
first over the entire region O'BA' between the trailing edge and the
Mach cone and then to subtract from this the integral over the region
EAA' Dbetween the leading edge and the Mach cone. This procedure is
indicated in equation (B24). Carrying out the prescribed operations
gives a result in the form

2
AL _ _ 2pVuss2(p?487) y co2p2
@ vy E: Roi-Ri1 + 52(p2+52) Ra1 (31)

i=1

The values of Roi, Rii, and Roiy are given in appendix B (equations
(B29), (B32), and (B33)). The index i=1,2 corresponds to the right
and left span, respectively. The terms Rp; and Rg» constitute the
1ift corrections for the region bounded by the Mach cone from the apex

- of the tralling edge, the trailing edge, and the lines which define the
tip edges. The additional terms R;{ and Rpi are those required if the
Mach lines from the apex of the trailing edge cross the leading edge.

As the angle of yaw is increased, the effect of the terms R,; and Roi
increases whlle that of the terms R;- and R., decreases.
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The correction for the rolling moment about the axis of symmetry
resulting from the 1lift correction of equation (27) is

2
3(n2 2
=2, Eﬁi.ﬁi;ﬂif. }; (-1)? {%OI—Rli +

qa 3 qap?
' i=1
2
co mi_(—'l Cos [mi—(—l)is]
T T P RS e} ()

(B2+52)3

The value for Ry 1s given in appendix B (equation (B41)). As in the
11ft correction, the terms R;i, Roi, Raj apply only if the Mach cone
from the apex of the wing crosses the leading edge.

It may be seen in figure 6 that the correction effected by super—
posing one constant—load sector in the wake cancels the largest part of
the triangular-wing lifting pressure behind the trailing edge. It is
necessary to remove the remaining 1ift by superposing additional
constant—~load sectors at the trailing edge. The amount of 1lift to be
canceled by these elements is shown in figure 6 where it is noted that,
along the right spsn, some of the elements will add to the 1lift distri-
bution where the amount canceled by the single field is excessive. One
of the elemental sectors, which will be referred to as "oblique" sectors
is also shown in figure 6,

Considering first the right¥spah trailing edgé, it is found that
the function necessary to cancel the 1lift distribution downstream of
this edge must satisfy the following boundary conditions for each sector:

1. u = ug : a S ta mlt
2.  u=0 ~1<ty<a
36 w=0 my t < ta < + 1

These boundary conditions and the region of the wing affected by this
correction are shown in figure 8.

Note that while the condition of zero induced downwash may be
specified for the wing area adjoining the element, it is not possible to
satisfy this condition on the opposite wing panel if the Mach cone trace
from the apex of the element should intersect the opposite trailing edge.
However, 1t has been found for the wings investigated in this paper that

the downwash induced by the oblique trailing—edge corrections was negli-
gible.
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Tue function satisfying the specified boundary conditions for the
oblique trailing—edge corrections is

up(a)
u = r.p. cos™ n.(a,tq) (33)
where
(1-a) (tq=my4)—(m1—a) (1-t,) B
na(a)ta) =
(1my.,) (tg—)
¢ (34)
mlt < t'a < 1 J
The induced 1lift for a single element then becomes
B2+52
(AL)g = oVug s2 Ga(a) (35)
and the total induced 1ift is
AL _  Vs2(B2+52 81y dua(a)
o= j: T2 Go(a) da (36)

B

where Gg(a) is a function given in appendix B (equation (Bl1)).

The rolling—moment correction due to a single constant—load sector
is

(AL')q = § Vug &3 32;52 Ho (a) (37)

and the total rolling-moment correction becomes

: a
éq%': pzﬂﬂf_"ﬂf t i‘l‘A.(les(a) da (38)
3 qup 5 da

(For Hy(a), ‘see appendix B, equation (B20).)
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The corrections for the 1lift distribution, rolling moment, and 1ift
for the left—span trailing edge may be obtained from the solutions for
region IV by reflecting the wing in the x axis, that is, replacing B,
mlt’ and uyg by - 3, mgt, and uaz, respectively. The functions Gs(e)

and Hg(a) are replaced by G,(a) and H,(a). The latter two functions
are given in appendix B (equations (B11) and (B2Q)).

Secondary Corrections

In canceling the 1lift about a given swept—backiwing plan form in
order to establish the correct boundary: conditions, the primary correc—
tions previously described introduce errors that can influence the 1lift
and rolling moment; however, only in the case where the Mach lines from
the apex of the trailing edge cross the leading edge are these secondary
corrections of any considerable magnitude. In this case, the primary
correction which may cause sizable errors is the initial wake correction

"Introduced by the single field from the trailing—edge apex. This wake

correction adds negative 1lift outboard of the tip station and ashead of
the leading edge. The secondary regions affected by canceling this
negative 1ift are shown in figure 2 as EABE' and II'C. The method for
making these secondary corrections to the 1lift and rolling moment is
given in appendix C.

YAWING MOMENT DUE TO SIDESLIP

In order to compute the yawing moment for a thin, flat wing at
angle of incidence in a frictionless flow, it is necessary to find the
moment of the total force (x—y plane) about a suitable vertical axis.
For a swept wing with subsonic leading edges, the total force in the
Plane of the wing is the resultant of the drag force due to 1lift and the
thrust force due to the edge suction. The drag due to 1lift is. al for
thin, flat wings, and, in coefficient form, may be written as

&
-

Cpp, = ofL = == a2 | - (39)

o
Q

where o 1is measured in the plane of symmetry of the wing. The rolling
moment about the axis of symmetry may be expressed in terms of the yaw—
ing moment due to the drag force about an axis normal to the axis of
symmetry as follows:

z. :

L'”=”=%L -Ey=2 (%0)

o)
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where N, 1s the yawing moment due to the drag force Dy. In this equas—
tion ¥ 1is the moment arm in the plane of the wing from the center of
pressure to the axis of symmetry of the wing. In coefficient form, the
yawing moment due to the drag force may be written as

Cc C
~1_ Ro (41)
a a2

The suction forces are those which are associated with the singu—
larity in the 1ift distribution which occurs at subsonic leading edges
of thin, flat wings. 1In reference 10, the formula for finding these
suction forces is given for any subsonic leading edge. By considering
the flow two-dimensional in the neighborhood of the leading edge, it is
possible to detérmine the formulas for the suction force (per unit 1ength)

normal to this edge as
= 2 1m®
o =npf(x) B / B24m2 (k2)

where f(x) 1is the strength of the leading—edge singularity in up(a)
and m is B times the local slope of the leading edge.

. For the yawed triangular wing

= (Bz*'miz)l/4 Vo Sz . L
f1(0) B E(ko) Wf(1+m,)(14mz) + &/ (1-mp) (1-mp) v ()

where 1=1,2 refer to the right and left spans, respectively, and kg,

is as given in equation (4). This value for fi(x) above is the same
for the swept wing unless the Mach lines from the apex of the trailing
edge intersect the leading edge. For small angles of yaw the effect
introduced by the Mach lines crossing the leading edge is negligible and
not considered here. The yawlng moment about the apex due to the suction
on one edge is ‘

X
Ngy = np Vlfmiz A EE%ELE u/\ o1 fi(x)2 xdx (44)
(o}

where Xo4 is the chordwise distance to the wing tip from the apex.
The total yawing moment due to suction for steady sideslip or yaw is
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Ng = Ng; — Noy . (45)

The integration of equation (45) ylelds in coefficient form,

Cng .usz [ m,+m ] [ -
_— T | Jimi2 (B2+m;2) X
o? - 6E (ko)zﬁz3 L+mymo+,/(1=m; 2) (1=mp2) | = '

524+p2

) - e (BS]

The total yawing moment about the vertical axis (z axis) bthrough the
apex of a swept or triangular wing with subsonic edges is

Cn _ Cnd'cng
P 0D

It will be noted that the suction effect along the tip which becomes a
leading edge has not been treated here. The contribution of this effect
to the over—all yawing moment is small by comparison with that of the
subsonic leading edges, and there is some question as to whether the tip
suction is realized in a real fluid.

" APPLICATION AND DISCUSSION

The analysis in the foregoing section has been directed mainly
toward finding the rolling moment for a swept—back wing with all edges
subsonic. The representatlve wing chosen for analysis (shown in fig. 1)
is swept back 63° , has a taper ratio of 0.25, and an aspect ratio of L4,
In addition, the rolling moments for three other plan forms are computed
for the sake of comparison. These wings have the same sweepback and
wing area as the tapered swept—back wing sbove and are of relatively low
aspect ratio., These plan forms are shown in figure 9 and represent a
triangular or delta wing, a delta wing with streamwise tips, and a so—

-called "arrow wing" with a supersonic trailing edge. In figure 10, the

variation of rolling-moment coefficient with angle of sideslip is plotted
for the various plan forms considered. All the wings gave a positive
rolling moment for s positive angle of yaw, that is, the left tip tended
to move upward and the right tip downward.
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In determining the rolling moment of the 630 swept wing, it was
found necessary to consider only certain of the primary corrections to
the basic rolling moment. The primary corrections which contributed
noticeaebly to the over-all rolling moment include the tip corrections
and the wake correction due to the single uniformly loaded element, The
magnitudes of these corrections as compared with the total rolling
moment per degree of yaw are given in table I. The secondary corrections
considered were found to be negligible except for the correction to the
primary wake correction at the leading and tip edges. This correction -
is listed in table I as secondary effects. In the case of the delta
wing with streamwise tips, the only corrections necessary were the pri-
-mary tip corrections. For the arrow and delta wing, it was necessary
only to compute the basic rolling moment. The rolling moments for these
two wings are in agreement with the results obtained in reference 1.

In general, when computing the rolling moment for s highly tapered
swept wing by the superposition method, it is necessary to consider only
the basic rolling moment and the primary correction given by equation
(32). For the wing analyzed here, the error in neglecting all other
corrections is less than 4 percent for the range of yaw angles consid-
ered. It should be pointed out, however, that the primary and secondary
tip corrections become increasingly important as the taper 1s decreased.

The yawing-—moment coefficients of the wings analyzed are given as

a function of yaw angle in figure 11. The yawing moments due to normal
force and leading—edge suction are computed about the vertical axis
through the apex of the wing. All wings exhibit stable yawing moments,
that is, for a positive yaw angle the wing tends to yaw to the left or
the left tip tends to move forward and the right tip rearward. The
yawing moments for wings 3 and 4 were in agreement with the results of
reference k4.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Oct. 30, 1950.
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APPENDIX A
FORMULAS FOR THE INTEGRATED BASIC LIFT AND ROLLING MOMENT
LIFT FOR THE BASIC WING PLAN FORM

The total basic 1lift is obtained by integrating the 1lift distribu—
tion given in equation (2) over the plan form defined as region I in
figure 2. The ‘integration is performed over four separate areas shown
in figure 1 as OBA, 0BO', OCO', and OCD. For the left span a reflec—
tion of the wing in the x axis permits the integration to be performed
in the first quadrant. Such a reflection corresponds to the following
transformation of Parameters: ‘ .

-5 —= B alt —_ &2t m; —> Mo - mp —> m;
myy —> Moy Moy = My (A1)

Then the 1lift may be expressed in the following form:

I
a21  pyi(a) (x
2w Z f f upy(e) SE2) ayaa (42)
a1i o 3(y,a) ’
i=1
where the Jacobian has the value |
M =B A a (A3)

and

up, (8) = up (a) = up(a)
| (ab)

qAa(a) qA;(a) = qu(a)

The limits yi(a) are the y coordinates of the intersections of

_ the rays from the apex and the tip or trailing edges; yi(a) and y.(a)
are at the trailing edges while yo(a) and yu(a) are at the tip egges.
The values for the limits of integration are '

\
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\

v1(a) = coa(my +8) [(mlt—a; N D
yo(a) = as [p(as+d)]” J/BE¥o2
| 7 (45)
ya(a) = coa(me,—8) [(moy—a) Jp24+52]7"
va(a) = as [B(a=8)] JB2+E2 J
and, for the integration with respect to a,
ayy =—95 812 = 821 = 814 ]
813 = ® 814 = 823 = 82¢ > (A6)
822 = M 8p4 = Mo | J

Tt can be seen that the third and fourth terms of equation (A2) may
be obtained directly from the first and second terms by applylng the
transformation given in equation (Al).

The integration of equation (A2) gives for the total basic 1lift

% = OPys2 BE45" [(mlt_alt >2 1,(8) + I=(8) +<E§S_—:—E>2 I,(3) + I4(8)]

p2 a1t+8
(AT)
where
1.(8) 1 { [mz(mltfml)—ml(mlt+m2)],/(m1—a) (mota)
* B (mlt—ml)(mlt"‘mz) s ¥
> a.-_-al.t
m 4 (my+mo) P (m1—-a) (m2+m1t )=(mz+a) (mlt‘_ml )}

2 /(my—my ) (my+mo) Imlt—al (my+mp) a=—§

(A8)

and
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_ 1 8 (my+mp ) _y (m—a) (mo8) +(mota) (my+8)
128 = s () {+ 2 J(mard) (mas) O (245) (myomp)

[mo(my+8) +my (me—8) ]  (m3—a) (mo+a) } o , | (A9)

a+d a=ayy

The values for I5(d) and I, (8) may be obtained by applying transfor—
mation (Al) to equations (A8) and (A9), respectively.

INTEGRATED BASIC ROLLING MOMENT

The basic rolling moment is obtained by integrating the moment due
to the basic 1ift distribution about the axis of symmetry of the wing
over region I of figure 2. The integration is performed over the four
areas of region I as in the case of the basic 1ift. The basic rolling
moment, therefore, is defined as

2 «
L' hp Z fazi fyi(a) y 3(x,y)

= - = (a48) —2"= dy da —
da - Va:;B2+52 QA(a) a (é+ ) o(y,a) v

i:l ali (o]

L .

- fyi(a) y o(x,¥) \
Z f uAl(a) —a- (a—6) m—)- dy da (AlO)
i=3 o .

ayi

Here the Jacobian has the same value as that given in equation (A3) and
the limits of integration are as given in equations (A5) and (A6). In
the same way as in the 1ift case, the third and fourth terms of equa~—
tion (Al10) may be obtained from the first and second by equation (Al).
The integration of equation (Al0) yields for the rolling moment

. .
2,82 Ty, —a
L' _ _ 4 Pysd £35 [ t li") I1,(8) + I=(B) —
3- 52 a1t+6

(%)3 II,(8) — I,(5) J | | | | (a11)
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Here Io(®) and I (3) may be obtained from equation (A9 while the

value for IIl(B) is
mlt+8 m, oo 1
mlt—-ml m1t+m2 [mlt—a

II,(3) = — I1(8) —

_3_( 1,1 ):l N 2(mz>—m,) }w/(ml—a (mp+a)
2 mlt+m2 e P (mlt"ml (mlt+m2) 1,78

{(mz-m1)<1 + l>—1<'m2—m1>x
mlt+m2 mlt—ml 2 m1t+m2 mlt—-ml

3 /MM myedmp
[ 1+ + X
2 \m; 1_J+m2 my -y

2262

1 _y (mme) (m—e)=(my —m; ) (mata) (47524

sin

N (mlt"'ml) (m1t+m2) |m1t"9-| (m;+mz)

a=—5

(Al2)

The value for II, may be obtained from equation (Al2) by equation (Al).
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APPENDIX B

FORMULAS FOR THE PRIMARY INDUCED LIFT AND

ROLLING-MOMENT CORRECTIONS
INDUCED LIFT CORRECTIONS

In general, the equation for the induced lift correction at a tip
or trailing edge due to one constant—load sector may be expressed aB

| L " . | |
(AL)g; = 20V ./P = .J[yi ) E%i {éos—i n;(asta) 2z _ W

a(y’ta)
tali Yag .

28/ (a=8)(a+l)(1+tg) O(x,¥)
1 T8 2% (6-ta) B a(}';ta):, & e »31)

1=1,2,3, 4%
_Jo 1402
71‘{1 i=2

The Jacobian has the value

o(x,y) YYay
= B2
3(y,ta) tg® / (52)

For 1i=1,2 the corrections apply at the right— and left—span tips,
respectively, and for i=3,4 +the corrections apply at the right— and

‘left—span trailing edge. The limits yi(ts) are the values of y at

the intersections of the edges of the wing with the ray tg/B (figs. &4,
5, and 8). For 1i=2 (left—span tip) it will be noted that there are
two integrals to be evaluated in equation (Bl). This added correction
1s required at any tip which becomes a leading edge, as does the left—

span leading edge.

For purposes of integration it is convenient to write equation (B1)
in the form ' ’ ' :
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: t u
a i "84
(AL)gy = 20V u/\ . f5 a [}03—1 ni(a,ty) —

tayy °©

2871 (a—ﬁ (a+1) (l+ta) o(x,t) & at,
l+5 B_ta) a(gyta)

i=1,2,3,k4
where
£ = ¥,
£(ty) = [yiwa)—yai}

va, = as [B(a+d)]™" .fB2+52

Va, = as [B(a=8)] " JpZ+02

Yo, = 28 (m-e1)) [Blm—e)(a10)]17 N

Yo, = 85 (moi—8z,) [B(moy-a)(apy—8)] JBE+02
and |

dua(a) _ dupg(a)
Ug; = Uap = —Eﬁg—— Ugg = Ugy = g

\

> (B3)

r (BL)

? (B5)

(B6)

The values for 1n; and ng5 can be obtained from equations (12) and (34),
respectively, while 1o and n4 may be obtained from 7; and ng4 by

‘equation (Al).
The limits of integration for equation (B3) are
E1(ta) = 5 te 61(a) [B(tam )] fB2452
Eo(ty) = 5 by 82(a) [B(tgmz, )] B2482
Eo(ta) =8 ta 05(a) [B(tatd)]  JB2482

£, (ts) = 8 b, 0,(a) [B(ta=8)] " B2

> (87)
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and the integration with respect to tg5 are

ta;; == 8 tajp, =8 tajz=taj, =1
(B8)
Yapg = M1y tayy =Mz tay =tay, = -1
where the functions 63i(a) are defined as
61 (a) (m14+8) (a—a14) 3
a =
' (a+d) (a1, +5)
02(a) (m24—3) (a—azy)
a =
® (a-5) (az,~d)
| ‘ > (B9)
' (my4+8) (a14—2)
93(3)‘=
(mlt—a)(alt+6)
0. (a) = (m2—B) (azy—a)
4 (met—a)(azt‘ﬁ) ' J

The integration of equation (B3) ylelds for the induced 1lift due to one
constant—load sector '

(AL)ai = pVug; sZ B Gy (a)
(B10)
1=1,2,3,4
where the functions Gj(a) are defined as
Gi(a) =61(a)” ci(a) - | (B11)

The values of 64(a) are given in equation (B9) while gy(a) are
defined by the following relations: - ' ~
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1 1 1 (a+8) (1+a) ‘W
gi(a) = - +
mlt+6 my—6 My (m1t+6)(mlt+l)
1 1 1 5 (a—5) (1+a)
Gg(a) = - + [ - } X
mgﬁ—S mp,—6 mo,—a a(mgf—a) (mgt—a)(m2t+1)

(B12)

. 1 1 f(mye)(l-e)
gs(a m, +5 T a5 | ard (1-5) (m3 4 +6)

(a) = — 1 1 [(mage)(l-e)
gq4\8) = mzt_g - a—d + a+d (1—5) (mgt—ﬁ) J

For the total induced 1ift (equations (16) and (23)) the derivatives of
Gi(a) i=1,2 are also required. These are obtained by setting

G1'(a) = 201(a)e1' (a)g (a) +g4¢'(a)o1(a)® (313.)

where the derivatives 04'(a) are

. _ m1t+8
61'(a) = 721535
(B1k)
. _ mgt—S
82" (a) = e
and the derivatives gi'(a) are
, ) _ 1 (l+8.) (m1t+8)+(a+5) (mlt+1) 1-' ‘}
B " e = £0) (Lo ) (a¥0) (14)
1 SOl N CL TGN
1(a) = —— -1 B15)
- (?) (me,—a)? [2;(mzt—S)(l+mzt)(a—6)(l+a) i (

o] (a—5)-b5(a+1) )
2a2(mp~8) W (m2y—8) (1+mzy) (a-8) (1+a)
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INDUCED ROIIJNG—MDMENT CORRECTIONS

The induced rolling-moment correction for a single elemental sector
is defined as the moment of the induced 1ift of one element about the
axis of symmetry of the wing. The general equation for the rolling
moment for one elemental sector is, therefore, :

. ta yi(ta) u, : , )
(AL') _ _2poVB . 21 84 cos—1 Tli(a,ta) _
1 /p%ie2 o
tayi Yaj

2871 /(a=b) (1+a)(1l+ts) :, <y . _Z_ x) Axs¥) 4y at, >(Bl6’)

(1+3) - a2(d-tg) y,ts)
i=1,2,3,4 ' :
0 i1i#2
71 ='{i 1 s 2 ’

As in the case of the induced 1ift, the terms for i=1,2 are the
iInduced moments for elemental sectors at the right— and left—wing tips,
while the terms for i=3,4 are the induced moments for the right and
left trailing edges. The values of Jd(x,y)/d(y,ts) and ugy, are given
in equations (B2) and (B6), respectively. :

For purposes of integration, equation (B16) may be put in more
convenient form; namely,

2874 V//(a—ﬁ)(a+l)(l+ta)
(€]

| : 2 Yaoi §‘:’L Ug,
(AL )g, = -20VB= L/“ 2l U/" _;i {cos_l nia,ts) —
tayy ©

' ;
a2(d~tg) ] [££1(ta)+yasfa(ta)] T2 ag dta?(BlT)

1=1,2,3,4

/

‘where ¢ and £ are given in equation (BY) while fl(té) and fo(tg)

are defined as

t,+0 ‘ B
£1(ta) = §—  fo(ta) = 22 © (m18)
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The 1limits of integration are given in equations (B7) and (B8) while the
values for ygs are given in equation (BS). The integration of equa—
tion (B17) yie}ds for the induced rolling moment of one element at a tip
or tralling edge

2,82
+5
(AL') gy = PVgy s° BBZ Hi(a)

(B19)

1=1,2,3,4

Here the functions Hjy(a) are defined as

2

Hi(a) = 61(a) hi(a)

(B20)

1=1,2,3,k4

vhere the functions 64(a) are defined in equation (B9), while the
functions hy(a) are given as follows:

_ 61(a) a+d 1 1-5 _ ‘
hl(a) = Sl(a) [1 + 12 m—a 2 1+ml‘b :l w
01(a) (1-5) (a+d)

6(1+my, ) (m14+8) (my4—a)

ha(a) = g(s) [1— 0p(a) _(1+5) } r 82le) g, () Lo0)

6 (l+mgy) (mop—
G T [cmes oy % (o)
eale) - mz;L‘SC mzi"a ' mzi—a (mii-——:;g::it)
- [5Gt | 4
e - [0 St | s J
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The values for g;(a) in equations (B21) are given in equation (BI2).
In the integration of equations (18) and (25) by psrts, the derivatives
of Hy(a) and Hp(a) will be needed. They take the form

Hi'(a) = 264(a)64'(a)hi(a) + 64(a)®hy' (a) (B22)

The derivatives for 6i(a) are given in equation (Blk4), while those of
hij(a) are as follows:

() = gt (e) — L _ (1-B)(a+B)o ' (a) =
hl (a) &1 (a) 6 (l+m1t)(mlt+8)(mlt—a) *

01(a) Mi4+d _1 1-8
3 (m—e)? [gl(a) 2 (l+m1t)(m1t+8)J

. 1 [g(a) 6y(a)' (a+5 _1 1%
. 3 m-a 2 limg

1 = 1 _ 1 (l+5)(a"5)92' (a)
he' (a) = go'(a) - 2 ) ety ?(1323)

f2(a) moy-D [ 1 (145) ' :j

g — aamm
3 (mege)® U7 2 (Lemay) (meyd)

1 | N
3 feza(e) 92(a)] <;2t~a>
= . [ 1¥d
6 Fea(e) ox(e)] <l+m2t>
go1! = s [W_ 1 |
(mzt_a)z 2 W/ (m24~8) (14mzy ) (a~8) (1+a) ]
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The values for g;(a) and g4'(a) are given in equations (B12) and (B15),
respectively.

INDUCED LIFT CORRECTION IN WAKE DUE TO THE
SINGLE CONSTANT-LOAD ELEMENT

The total 1ift correction in the wake due to the single constant—
load element is given as

A QPV%ﬁ : b 3(x,¢)
qo - qaK(k [ f /; F(@,k) d(E,t5) ag dts -

1=1 My
1 §12
J/\ u/“ F(9,k) é}gi&il— at ats (32k)
tp, JEin (& ,ts) _
where
¥ Bt

ts = B = = ;:;6- (B25)

and the Jacobian has the value
o(x,t) _ Bt (B26)

(e, ts) o

The limits tp; refer to the rays from the apex of the tralling edge
through the leading—edge tip. For the right span t5i has the value

_ smy (B2452)+codB(my +8)

5 (B2Ta)
b 5(p248%)—coB(my+d)
vhile the 1limits for the integration with respect to ¢ are
Coby(my+8)
€11 = =
(tg—m1) &/ p2+87
(B27Db)
: sty B2+5°
12 D er———————

B(ts+d)
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The limits t5,, £21, and §22 for the left span may be obtained by
applying equation (Al) to equation (B27).

Performing the integration indicated in equation (B24) gives

| 2pVy, s2(p2+52 2
% == qa,a X (BB ) ;ﬂ I:ROi — Rii + _‘"(—ﬁ"é:ﬁ_‘a—z—)-g Rgi] (328)
’ i=1

where the values of Rpi, Rii, and Rzi are as follows:

1+my 4 1 Ao (Po) (Itmyy) (T4may)
Roiy = - = (B29)
(1-8) (my +8) 2 K(k) (1-8%) (my, +8) (m2,—B) :

where

Ay (@) = = [F(00,k" )E(K) = F(90,k" JK(k) + E(00,k")K(X)]  (30)

(moy—d) (L+myy)
(1-8) (my +mzy )

K o /(1—m1t) (l-mpy ) ‘ > (B31)

1]
n
e

Do

(l+m1t) (l+m2t)

K = 2(m1t+m2‘b)
‘ - ‘(l+m1t)(l+m2t) J

The values of A, for various values of ¢, are tabulated in refer—
ence 11. The value for Rgs may be obtained from equation (B29) by
meking the transformation of parameters given in equation (A1)

. _F(cpl,k){ 1+t 1 (1+my, ) (14me, ) y
UUKE) T L8 (55,48)  K(X),/ (1-57) (my#5) (mo )

[ng@o)—%ﬁ%%%y]} o  e®
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2 F(P3,k) 1+t
K(k) (1+my) (ts,—m1)

(1+m; 4 ) (14+moy )
1 t t 7
K(k) /(l_mlz)(mlt_ml)(mzt+ml) [ o A0(¢2) - P

where

©
2 Z_w? sin nuy sinh nvg

J; = tan— n=1
i
= 2
142 & o™ cos nuy cosh nvy
n=1
1=1,2
K(k')
-
w = e K(k
Uy = po = F(pi,k)
K(k)
1
Vl = 5 F((po,k )
(k)
vo = x F@2X)
K(k)

9y = sir=l v/<1+m1t)(l-tsl)

(1-my) (my 4 +moy)

- v//(m.zt+ml)(1+mlt)
( 1+ml ) (m1t+m2t)

P2
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—K'(ﬁ—} (B33)

F(CP lyk)

L (B3k)

(B35)

(B36)

(B37)

(B38)

(B39)
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The values for o are tabulated in reference 12 , while k, k', @5, and

ts, are given in equations (B31l) and (B27). It should be noted that
equals =n/2, Ji 'is zero. The values for R;o and Rpo may

when @,
be obtained from equations (B32) and (B33), respectively, if equation
(Al) is applied. . :

INDUCED ROLLING-MOMENT CORRECTION AT ROOT CHORD

The induced rolling—(moment‘ correction corresponding to the 1lift
correction in equation (B28) is

ugs®(82+52) i .y {Roi_m“

AI"
q qap

2
==

3
1=1

¢o® [mi—(-1)i8] & 0o® [mi—(-1)1612 4 | |
) (B2+452)° B ‘Rzi + 55 (R0 B Rai}(BbrO)

The expression Rzi is

_ (my+8)" F(ga,k)
(1-my2)%  K(k)

[ (l+m1)2 -1+ (l+m1£) J (l—ml)2

Ra1
2
(ts,~m1) (1-m; ) (m1,—my ) 2

‘gﬁ_}x[r@“uj;)'(ika}x

r
[ > Ao(9p) — J2 F(@o,k)

A/. 2 - T2 l:E(CPJ.,k)—
(1-72) (T2%%)  (1=73) (Tk")F(Py,k) - -

ToTy (1—+12)(1—k2112)} } (Bh2)

1_1-21-12
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. /( 1+m; ) (1~ts,) h
Y/ (o) (ets,)
? (B42)
B l+m,y l—mlt
T2 = < 1"1!11) ( 1+m1t > J

The form for Rgr may be obtained by using transformation (Al).
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APPENDIX C

FORMULAS FOR THE SECONDARY INDUCED LIFT AND

ROLLING-MOMENT CORRECTIONS

The corrections discussed here are those which are made.at the
leading and tip edges to correct for the residual 1ift and rolling
moment introduced by the single constant-load correction in the wake.

The formula for the streamwise velocity for a given elemental
sector at the leading edge of the wing is of the same form as equa—
tion (19), and for the right span is

u = b [cog'l (ts—ml)(l+tb)+(t5ﬂn1)(l+t5)'_ 2my A (ta=my) (1+ts) /1+ty J

T (tp—t5) (1+m,) t5(14m; ) my—typ
’ (c1)
where, if X Ny is the apex of the element,
y_
t = B 3o (c2)
S 4
=g b8 :
ts =B R (c3)
and '
a F(P,k)

The term-in brackets to be differentiated is u(tg) of equation (k).
The equivalent left—span solution may be obtained from equation (C1) by
applying the transformation of equation (Al). In order to apply equa—
tion (Cl) at the right tip, it is necessary to replace m; by -5 and
at the left tip by 8. It will be noted that at the right tip the
second term of equation (Cl) is imaginary, while at the left tip it is
real, Therefore, it 1s necessary to retain the second term in the square
brackets for evaluating the correction along the left span.
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Induced-Lift Corrections

The secondary correction to the 1lift for a single element at the
leading edge of the right span takes the form

' 4 th €11
a - 2PVB 1 -1 _

T, (tp,m, )] £ oa dty +
tp2

m €21 .
f u, [cos™ n(tp,m1) —
Ttp, "o

T4 (b ,my)] ;i; a atb} | (c5)

where £, and £oy correspond to the intersection of the rays tp with
the trailing and tip edges, respectively, of the wing plen form, and

th, 1is the ray tp passing through the trailing-edge tip. The expres—
sion in brackets denotes the bracketed expression in equation (Cl). The
limits of integration have the values

c 'bb(m1+6) (ts—ml )
2 e (gt (o) o
ty [s(BZ+82)(ts—ml)—ﬁco(t5+5)(ml+8)]
€21 = — (cT)
B (tp+8) (tmy) /B2+52
BCOtS (m1+8) (mlt+'5)—smlt( 324’62) (ta-ml)
tp, =

8
Bco(ml+8) (mlt+8)_s (B2+82) (ts—ml) (C )

while the left—span correction may be obtained from equation (C5) vy
applying equation (Al). S

The secondary correction to the 1ift along the right—span tip for a
single element is
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dta (AL)l dt5 2pVB u/\ JF uy, [cos™2 n(tb,~6) -
T(ty,~5) ] ;%5 at aty : (c9)

The limit of integration §&g; refers to the intersection of the ray tb
with the trailing edge, and has the value

=Stb(t§;mlt) pver - (c10)
B(t5+d) (m14~tb)

81

The left—span—tip'corréction may be obtained by applying equation (Al)
to equation (C9).

The total secondary correction to the 1lift is obtained by summing
the 1ift due to all the elemental sectors along the leading and tip
edges., The correction along the tip includes an initial sector of con-
stant magnitude F[Q(t5 ),k/K(k)]ug. It should be pointed out that due
to the different orientation of the elemental sectors along the tip and
leading edges there is an overlapping of sectors in the region bounded
by the extensions of the leading edge and the ray t3; from the apex of
the trailing edge through the tip of the leading edge. An approximate
method of correction for this overlapping is to let the initial tip
sector be bounded by the extension of the leading edge rather than by
t81. Then the total secondary correction to the 1lift for the right span
is obtained as

AL t gy |
E)-% at at
(qa} {f Bt5 (AL) 1y, 5, 48 +“/;a dts (AL)44p 6 +

208 F[¢(t51),k]\/h—5 \/PESI[éog_l (m1+5)(1+tb)+(tb+5)(i+m1) N
w0 KK Jop Jo - (g ) (1-8)

28 o (m3+5) (1+my ) 1+ty ] §2 a dtb} ' (c)
m,; (1-5) N —(B+tp) -
where
b, = TaS(B7+5%) + 0qBB(m+5) (c12)

5(B%+6%) = coB (my+3)
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The total secondary correction to the 1ift at the left span may be
obtained from equation (C1ll) by transformation (A5). If the Mach cone
from the apex does not cross the leading edge, then it is necessary to
evaluate only the second integral of equation (Cll), since the 1limit
ty, becomes unity.

Induced Rolling Moment

The secondary correction to the rolling moment for an elementsl
sector at the leading edge 1is

to
a e _ _2oV2 1 _ _
ity (') 1y g, 36 = % W/Bo+02 a2+52{:u/\ k/p up [eos™ nlty,m)

Ty (tp,my)] [gfll(tb)+$21)f21(tb) E dt aty +

my €21
f f w, [cos™ n(tp,m) — T, (tp,m)] X

l

g t 3 g t
[&£12(tp)+( 21) 21(tp)] E & dtb} | (c13)
o
vhere f1,(tp) and £51(tp) are defined as
tp+d
fi1 = gb
(C1k)
f2y = o
ts

and

Co t5(my+5)

T e tem ()

The 1limits of integration are as given for the 1ift in equations (C6),
(cT7), and (C8).
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The secondary correction to the rolling moment for a single element
~along the right tip takes the form

-3
EZ

a1 |
~1 - -
e j; w, [cos=1 n(tb,~5) T{tb, 8)1x

)1tip

[ef11(tp)+(E8,) f21(tb) ]
2

£ dt dty (C16)
The value for &5, in equation (C16) is

sty &/ B2+52 ,
= e, 1

The left—span correction is obtained from equﬁtion (C16) by transforma—
- tion equation (Al). The limit of integration &5, 1s the same as pre—
viously given in equation (c10). v

The total secondary rolling-moment correction for the right span is

81 (AL') dtg + e UNAD a£ +
qm ) {f LB ft a’cs Teip O
81 .

2oV | Fo(t5y),k] f f C(my,8,tp) X

n ;752+s? K(k)

[E£21(tb) + (E5,)F21(tb)] ‘.E%é at dtb} | (c18)

where the 1imit tp, 1s as given for the 1ift in equation (c12), the
value for £5, 1s given in equation (Cl7), and C(m;,5,ty) is the
bracketed expression in the last integral in equation (Cl1l). The left~
span correction is again found by applying equation (Al). If the Mach
cone from the apex of the tralling edge does not cross the leading edge
then all terms of equation (C18) but the second vanish.

- Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Oct. 30, 1950.
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TABLE I.— CAICULATED ROLLING MOMENT FOR WINGS 1 AND 2.

. Wing 1 . Wing 2
Source of moment 35 per degree of s per degree of
q yaw yaw
Basic 10.70 £t2 | 73.4% [ 2.33 £t | 97.0%
Tip effect .0k £t3 3% | .07 £t3 3.0%
lyake from apex 3 '
of trailing eage| +-32 Tt° | 29.6%|———— | ———
" Oblique wake —_-——— —_————-—-—— —_——-
15econdary —48 £t3 | 3.3 | - — == | — ==
Totals 14.58 £t° [100% | 2.%0 £t3 | 100%
It )
1 = = 5O
Values for ia taken at V¥ = 59,
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Figure | .—Basic geometry of the tapered swept wing

with all edges subsonic.
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Basic Region v
Region! OABO'GD
Primary Regions

Region!l ABF
Region lll DGC

Region IV O'EAB }
RegionV 0'C 0]

Secondary R ‘ | } m o
econdary Regions coti M, / \ cof_,_lf

Region VI EABE"
RegionV!l FF'B

Region Vil GCG' ]
Region IX 11'C / \/

Figure 2— Regions over which the various corrections apply.
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UA(U )

~Ma 8 0 m, T‘—\E:A‘C:ﬁ:/7 Q

~ Figure 3~ Velocity distribution uJa) for a yawed triangular wing-
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I »tq
Section ¢-¢
3
“N— f
AN
Yox
a

Figure 4.— Typical sector (shaded) and the boundary conditions

for the right-span-tip correction.



NACA TN 2262

- =g

T . Figure 5,—Typi¢ol sector (shaded) and the boundary conditions
for the left-span-tip correction. '
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\
AN
o AN
/ AN
/ tan-'a
B
\\\
y: N
. X AN
/4 .
Y/ \ N

SUNACA T
R el

el N

-l-my, -§ © m, ! a
-m, -§ O m,
Figure 6.- Detail of the wake of a tapered swept wing showing the constant-
load elements required to cancel the lift distribution behind the
trailing edge.
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Sectionj-j

L

Figure 7. — Typical sector (shaded) and the bbunddry conditions

for the correction "from the apex of the tralling édge';




o2 NACA TN 2262

Section h-h

SNACA

Figure 8.— Typical sector (shaded) and the boundary conditions

for the right-span oblique trailing—edge correction.
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Wing |

Wing 2
A =4 A =153
‘ s =5.00 ft. AN s=3.09 ft.
4 cz400ft. 7 N ¢z 707t
A=.25 ’
Wing 3 Wing4
A =208 - A =288
s=3.57ft - sz 4,25 ft.
cg?.OOﬂ. o co=5.88ff.
. 2= 0
For ail wings
S=25sq.ft. |
A=63°

Figure 9~ Various plan forms used in the computations.
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_ Yaw angley in degrees
Figure 10-Variation of rolling-moment coefficient per unit angle
of attack with yaw angle y for M=VZ'
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! Figure |}.— Variation in yawing-moment coefficient per unit angle

of attack with yaw angle y for M={2"
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